Physicists have presented a new method to predict what really
lies inside the event horizon of a black hole, and it can give us a more
precise information about their mysterious internal structures. Studying black
holes is mainly like doing science backwards. You are familiar with the
scientific method, observe, analyze, experiment and hypothesize. But when it
comes to black holes, we initiate with the hypotheses and mathematics, and then
try to work out how to detect what we think is there.

But there’s seems to be a one big problem with the
current method, as a group of astronomers from Johns Hopkins and Towson
University point out - physicists have been building their opinion of the
internal structure of a black hole founded on how certain mathematical
coordinates fit together.

Liable on which coordinates you select, and how they’re
observed from your position as an observer, you’ll possibly get very diverse outcomes
from someone who picks a different set of coordinates from another perspective.

The best example for this is, our maps and atlases that
we have made when it comes to our view of our own planet, because we’ve been signifying
certain landmasses subjectively, rather than relatively.

"Any such coordinate choice necessarily results in a distorted view, just as the choice of projection distorts a map of the Earth. The truest way to depict the properties of a black hole is through quantities that are coordinate-invariant."

The team, led by physicist Kielan Wilcomb from Towson
University, recommend that in order to find out what’s inside a black hole, you
must concentrate entirely on mathematical quantities called invariants, which
have the similar value for any choice of coordinates.

Black hole from Interstellar movie |

At the 228th conference of the American Astronomical Society in San Diego just this week, the group of astronomers stated that there
are 17 such quantities linked to the curvature of space-time that can be used
to observer and study black hole interiors. Because of certain mathematical
relationships among them, they say only five are actually independent.

The team’s research has been published on the pre-press
website arXiv.org ahead of peer-review, so other physicists can use these five
invariants to try to build the inside of a hypothetical black hole. According
to Wilcomb and co. say they tried it out themselves, they actually saw
something really awesome:

"We compute and plot all the independent curvature invariants of rotating, charged black holes for the first time, revealing a landscape that is much more beautiful and complex than usually thought."

Now what we need to do now is to just figure out if we
can get to another universe through a black hole, so we can all plot our
parallel universe vacations.

**This blog is managed by Umer Abrar. To contact the editor, write to mirzavadoodulbaig@gmail.com or follow him on facebook here:**