Image Credit: Chaoss/Shutterstock

Well let’s start with the
current scientific consensus and the current scientific consensus is that that
universe “exploded” into actuality about 13.7 billion years ago. Gravitational
waves (the cosmic microwave background) and the excess of prehistoric elements
all provide great strength to the legitimacy of the big bang theory. Nonetheless,
in spite of all of this proof, scientists are still left with an irritating yet
interesting question question: What triggered the big bang? Where did all of
this matter originated from?

Numerous scientists accept
that the universe came from nil, this idea can only be correct in light of
quantum model. Quantum fluctuations can permit a universe to suddenly form from
nothing. Nonetheless, deprived of a mathematical proof, this idea that the
universe naturally exploded into existence has no real matter. And that’s the
problem. We didn’t have any kind math to support the “universe from nothing” theory.

And this is where Dongshan and
his team from the Wuhan Institute of Physics and Mathematics (WIPM) steps in.
They have succeeded to develop the first mathematical proof that the big bang might
have been the outcome of quantum fluctuations. The Heisenberg uncertainty principle
and Wheeler-Dewitt equation are at the core of this new evidence.

In the 1960s, John Wheeler and
Brice Dewitt arose with a mathematical structure that produced a relation between
quantum mechanics and general relativity. The equation lays a lot of the basis
for the idea of quantum gravity. The equations main problem is that it doesn’t contain
time. So it’s not grand union, but it’s the finest we have at present.

Now let’s talk about Heisenberg’s
uncertainty principle. Heisenberg’s uncertainty principle is more commonly recognized.
This principle states that a viewer cannot know both the position and the
momentum of a quantum particle. From the uncertainty principle, we can see that
empty space isn’t actually empty at all. In this vacuum, particles start to pop
in and out of existence due to probabilistic quantum fluctuations. So you must
be wandering, how does any of this help us? Dongshan described, “We proved
that, once a small true vacuum bubble is created, it has the chance to expand
exponentially.”

The WIPM team define these
bubbles of true vacuum as a picture-perfect sphere. They use this info to
figure out how quick the radius of the sphere can inflate. They must examine
the bubble in the three possible geometries of spacetime i.e. open, closed, or
flat. Irrespective, the WIPM team found that the bubble would inflate to a size
that would product in a big bang.

This new equation allows for
some very exciting perceptions into the universe. The theory describes dark
energy, the energy that is triggering the extension of spacetime, as a quantity
called quantum potential. Quantum potential comes from the pilot-wave theory,
which is a less-known understanding of quantum mechanics. Pilot-wave theory is
able to repeat all of the estimates made by current quantum theory, give
details about things like the Schrodinger’s cat puzzle, and adds the amount of
quantum potential.

The main problem with the
pilot wave theory is it doesn’t make estimates that are exclusive to the
theory. All of the forecasts made by pilot-wave are either matching to the more
extensively believed understanding of quantum theory, or the estimates are not
testable. To be exact, until this new source from WIPM was released.Since quantum potential is a
key part of this new equation, it’s conceivable that scientists will
reinvestigate the pilot-wave theory, and possibly push our understanding of the
cosmos one step further.

You can Read the WIPM paper on
arxiv.

(If you find any error or
miscalculation in this article then please feel free to share in comment and if
you want to expand this article then comment below)

**This blog is managed by Umer Abrar. To contact the editor, write to mirzavadoodulbaig@gmail.com or follow him on facebook here:**